சுருக்கம்

Modified Watershed Segmentation with Denoising of Medical Images

Usha Mittal, Sanyam Anand

De-noising and segmentation are fundamental steps in processing of images. They can be used as preprocessing and post-processing step. They are used to enhance the image quality. Various medical imaging that are used in these days are Magnetic Resonance Images (MRI), Ultrasound, X-Ray, CT Scan etc. Various types of noises affect the quality of images which may lead to unpredictable results. Various noises like speckle noise, Gaussian noise and Rician noise is present in ultrasound, MRI respectively. With the segmentation region required for analysis and diagnosis purpose is extracted. Various algorithm for segmentation like watershed, K-mean clustering, FCM, thresholding, region growing etc. exist. In this paper, we propose an improved watershed segmentation using denoising filter. First of all, image will be de-noised with morphological opening-closing technique then watershed transform using linear correlation and convolution operations is applied to improve efficiency, accuracy and complexity of the algorithm. In this paper, watershed segmentation and various techniques which are used to improve the performance of watershed segmentation are discussed and comparative analysis is done.

மறுப்பு: இந்த சுருக்கமானது செயற்கை நுண்ணறிவு கருவிகளைப் பயன்படுத்தி மொழிபெயர்க்கப்பட்டது மற்றும் இன்னும் மதிப்பாய்வு செய்யப்படவில்லை அல்லது சரிபார்க்கப்படவில்லை

குறியிடப்பட்டது

கல்வி விசைகள்
ஆராய்ச்சி பைபிள்
CiteFactor
காஸ்மோஸ் IF
RefSeek
ஹம்டார்ட் பல்கலைக்கழகம்
அறிவியல் இதழ்களின் உலக பட்டியல்
அறிஞர்
சர்வதேச புதுமையான இதழ் தாக்க காரணி (IIJIF)
சர்வதேச அமைப்பு ஆராய்ச்சி நிறுவனம் (I2OR)
காஸ்மோஸ்

மேலும் பார்க்க