சுருக்கம்

Dynamic Personalized Recommendation Algorithm on Sparse Data

B.Prasanth R.Latha

Recommender systems suggest people items or services of their interest and proved to be an important solution to information overload problem. The big problem of collaborative filtering is its. In order to solve scalability problem, we can implement the Collaborative Filtering algorithm on the cloud computing platform. Recommendation systems are very important in the fields of E-commerce and other Web-based services. One of the main difficulties is dynamically providing high-quality recommendation on sparse data. In this paper, a novel dynamic personalized recommendation algorithm is proposed, in which information contained in both ratings and profile contents are utilized by exploring latent relations between ratings, a set of dynamic features are designed to describe user preferences in multiple phases, and finally a recommendation is made by adaptively weighting the features. Experimental results on public datasets show that the proposed algorithm has satisfying performance.

மறுப்பு: இந்த சுருக்கமானது செயற்கை நுண்ணறிவு கருவிகளைப் பயன்படுத்தி மொழிபெயர்க்கப்பட்டது மற்றும் இன்னும் மதிப்பாய்வு செய்யப்படவில்லை அல்லது சரிபார்க்கப்படவில்லை

குறியிடப்பட்டது

Index Copernicus
கல்வி விசைகள்
CiteFactor
காஸ்மோஸ் IF
RefSeek
ஹம்டார்ட் பல்கலைக்கழகம்
அறிவியல் இதழ்களின் உலக பட்டியல்
சர்வதேச புதுமையான இதழ் தாக்க காரணி (IIJIF)
சர்வதேச அமைப்பு ஆராய்ச்சி நிறுவனம் (I2OR)
காஸ்மோஸ்

மேலும் பார்க்க