சுருக்கம்

A Hybrid Pre-Processing Techniques for Artifacts Removal to Improve the Performance of Electroencephalogram (EEG) Features Extraction

B.Sabarigiri, Dr.D.Suganyadevi

Electroencephalogram (EEG) blend reflects the summation of the synchronous activity of thousands or millions of neurons that have parallel spatial direction. EEG Signals are extracted from Human Brain. While Extracting an EEG Signals, large amount of data with diverse categories will be collected from the human skull. To investigate and categorize the valuable information from the EEG recordings, computerized methods are required, because removing any of the components would remove too much of useful EEG signal in sequence. EEG Recordings generally not just contains electrical signals from mind, which is polluted with various artifacts. It is the combinations of unwanted mechanisms like Power Line Noise, Electrocardiogram (ECG), Electrooculogram (EOG) and Electromyogram (EMG). Signals in the EEG that are of non-cerebral origin are called artifacts. So, before analyzing the brain signals they need to be preprocessed. The focus of this paper is proposing the development of an integrated artifacts removal technique that can automatically discover and remove the artifacts in order to smooth the progress of EEG Assessment, and the hybrid pre-processing techniques is based on the joint venture of Adaptive Filtering, Wavelet Denoising and Independent Component Analysis (ICA) in order to improve the feature extraction performance of the EEG Signals. This paper converse the comparison with existing techniques, and discuss the advantages of the proposed hybrid pre-processing Technique.

மறுப்பு: இந்த சுருக்கமானது செயற்கை நுண்ணறிவு கருவிகளைப் பயன்படுத்தி மொழிபெயர்க்கப்பட்டது மற்றும் இன்னும் மதிப்பாய்வு செய்யப்படவில்லை அல்லது சரிபார்க்கப்படவில்லை

குறியிடப்பட்டது

கல்வி விசைகள்
ஆராய்ச்சி பைபிள்
CiteFactor
காஸ்மோஸ் IF
RefSeek
ஹம்டார்ட் பல்கலைக்கழகம்
அறிவியல் இதழ்களின் உலக பட்டியல்
அறிஞர்
சர்வதேச புதுமையான இதழ் தாக்க காரணி (IIJIF)
சர்வதேச அமைப்பு ஆராய்ச்சி நிறுவனம் (I2OR)
காஸ்மோஸ்

மேலும் பார்க்க